


x-ray and neutron 
CRYSTALLOGRAPHY 

a powerful combination 
by Robert B. Von Dreele 

ining the structure of a crystalline material remains the most 
powerful way to understand that material's properties-which may explain 

so many Nobel Prizes have been awarded in the field of crystal- 
lography. The standard tools of the crystallographer are single-crystal 

and powder diffraction, introduced earlier in "Neutron Scattering-A 
Primer." What was not mentioned was that until twenty years ago 
powder diffraction could not be used for solving a new crystal 
structure, but only for determining the presence of known crystalline 
phases in powders of unknown composition. At that time material 
had to be grown into large single crystals before crystallographers 
could unravel the positions of each atom within the repeating 
motif of a crystal lattice. This severe limitation disappeared after 
H. M. Rietveld developed a workable approach for resolving the 
ambiguities of most powder-diffraction patterns. The technique, 
known as Rietveld refinement, has opened up essentially all 
crystalline materials to relatively rapid structure analysis. 
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This Escher painting shows a square lattice with a complicated unit cell, Illustrating in two di- 
mensions several kinds of symmetries found In real crystals. (We have darkened lines of the 
original grid to emphasize the unit cell.) If the colors are ignored, this pattern has both four- 
fold and twofold rotational symmetry as well as a number of mirror symmetry operations. When 
the color Is Included, the fourfold rotation becomes a color-transformation operator. Similar 
changes occur in the nature of the other symmetry operators as well. Reproduced with permis- 
sion: a1990 M. C. Escher HeirsICordon Art, Baarn, Holland. 



X-Ray and Neutron Crystallography 

This article presents a further improvement in powder-pattern analysis-that of 
combining x-ray and neutron diffraction data. We used this combination to make 
the first unambiguous determination of the structures of certain high-temperature su- 
perconductors and have since produced a portable software package for use by all 
crystallographers who collect both x-ray and neutron data. Here we will discuss the 
concepts and techniques that make the combination so useful and some of our recent 
results, including the determination of fractional occupancies by different elements 
at single atomic sites in a crystal. First, however, we need to extend the concepts on 
diffraction introduced in the primer. 

What Is a Crystal? 

Most solids are crystals: They consist of very many repetitions of a single motif 
or "unit cell," of atoms. These repetitions occur at a regular array of points in three 
dimensions, a "lattice." The opening illustration is a two-dimensional analogue of a 
crystal. The unit cell there is square, and contains several objects each arranged in 
a particular way relative to the others. One question about this pattern is how much 
information one needs in order to reproduce it. Clearly, one need only describe a 
single object (a fish), the set of rules for positioning it and the other objects in the 
unit cell (the fish of other colors), and the dimension of the unit cell itself. With only 
this information the entire pattern can be laid out to infinity. The classification of 
how the objects are positioned in the unit cell (in most crystals these positions are 
symmetrical) and of how the unit cells repeat is the mathematical theory of spatial 
symmetry, which is a branch of group theory (see the sidebar "Crystal Symmetry 
Groups"). 

The crystallographer's goal is to measure the lengths and angles of the edges of 
the unit cell (the "lattice parameters") and, more important, the arrangement of the 
atoms within the unit cell. Many kinds of arrangements are possible, for example, 
the interlacing of long molecular chains in a crystallized protein, or the stacking of 
metal and oxygen atoms in a superconducting oxide, but in any crystal the arrange- 
ment is the same in every unit cell. Why should atoms and molecules form such or- 
derly structures? A solid holds together because the atoms and molecules in it are 
attracted to each other. Thus the minimum-energy configuration of the solid occurs 
when its constituents are in as close contact as possible with their neighbors. This 
criterion is usually realized by a regular array, just as bricks in a neat stack are in 
closer contact and take up less space than bricks in a jumbled pile. 

The unit cell of a crystal is extremely small, typically 10 angstroms cen- 
timeter) on a side, whereas the sides of crystals in a powder may be 1000 to 100,000 
times larger. An equivalent stack of bricks, each 20 centimeters on a side, would ex- 
tend between 200 meters and 20 kilometers. The disparity in size between a unit cell 
and a crystal is so vast that we can model a crystal as if it contained an infinite num- 
ber of unit cells in all directions. This approximation has an enormous simplifying 
effect on a mathematical description of a crystal because we need to describe only 
the unit cell and can ignore the crystal as a whole except to note that the unit cell 
repeats indefinitely in all directions. 

With these ideas in mind, we can start with crystallographic mathematics and 
then connect it with the way a crystal scatters neutrons (reversing the plan of the 
primer). How do we mathematically describe a crystal? First, the description must 
reflect what we actually observe about a crystal. We "see" atoms in a crystal by scat- 
tering neutrons or x rays from them, so the mathematical model needs to describe the 
density of scattering power, p(r), a function of position, r, within the crystal. This 
scattering density is smooth and usu,ally real and positive. (In some special cases it 
can be negative or even complex.) Second, the function needs to repeat infinitely in 
all directions to match the repetition of the unit cells. In one dimension p(x) might 
look like the curve in Fig. la, which gives the x-ray scattering density along one di- 
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rection in molybdenum disulfide for two unit-cell repeats. The tallest peaks repre- 
sent the scattering density around the molybdenum atoms; the smaller peaks on either 
side correspond to the sulfur atoms. Like any periodic function, the variation of the 
scattering density with position x along the repeat direction can be expressed as an 
infinite sum of sine and cosine functions, or in other words, as a Fourier series in one 
dimension: 

l m  
p~ = [cos (-2~") + i sin (-2r;x)I 

n=O 
a 

Here n is an integer, a is the length of the unit cell in the x direction, and Qn = 
27rn/a. Figure l b  shows the first eight terms in the Fourier series for p(x) of MoS2. 
Each term represents a stationary wave, or "Fourier component," of scattering density 
whose wavelength is a /n ,  so that in the repeat distance a the wave undergoes exactly 
n oscillations. Thus the sum in Eq. 1 contains only waves that have a as a repeat 
distance. Each stationary wave has an amplitude Fn,  which for the MoS2 structure is 
either positive or negative. In the most general case Fn can be complex. 

Just as the displacement, x, can be represented by a vector in one-dimensional 
real space, the inverse wavelengths n/a (= Qn/27r) can be represented by vectors in 
one-dimensional "reciprocal space." These "reciprocal-lattice" vectors define a row 
of equally spaced points, labeled by the values of n. All the remaining reciprocal 
space is empty. The points are called the "reciprocal lattice" because their spacing is 
l / a ,  the reciprocal of the real-lattice spacing. (The name "reciprocal space" has the 
same origin.) Their locations depend only on a ,  the periodicity of the real lattice, and 
not on the contents of the unit cell. In Fig. 1c the amplitude Fn of the nth Fourier 
component of p(x) for MoS2 is plotted at the reciprocal-lattice point n/a. 

Thinking of the On's as one-dimensional vectors (the wave vectors of the Fourier 
components), we note from the definition of the Qn 's and the discussion of diffrac- 
tion in the primer that when the momentum transfer in a diffraction experiment 
(h/27r)Q = (h/27r)Qn, we observe a Bragg peak whose intensity is S(Qn) = I /^ 12.  
In crystallographic terminology the Fn's are called structure factors; unfortunately the 
same name is used by the neutron-scattering community for S (Qn) = IFn 12. What- 
ever the nomenclature, crystallographers frequently describe crystals in reciprocal 
space because the quantities they measure directly are the reciprocal-lattice vectors 
Qn and the intensities on the reciprocal lattice S(Qn)/27r. Figure 2 shows a variation 
of Fig. 1 whose significance will be discussed later. 

In order to extend Eq. 1 to descriptions of three-dimensional crystals, we replace 
Qn = 27rn/a with a three-dimensional wave vector Qh. For simplicity we begin with 
a real lattice whose three axes are mutually perpendicular, as shown in Fig. 3a. Then 
the natural coordinates are orthogonal, and 

h k l  
Qh = 2 ~ ( -  - -) . 

a ' b ' c  

Here a ,  b, and c are the repeat distances along the three axes of the unit cell, or lat- 
tice spacings, and the integer triplet h = (hkl) gives the components of Qh along 
the three axes of the reciprocal-lattice unit cell, measured in units of the reciprocal- 
lattice repeat distances a*  = 1 /a,  b* = 1 /b, and c* = 1 /c. Thus, in analogy 
with the one-dimensional case, the integer triplets h specify all the possible Qh val- 
ues, that is, all the wave vectors of Fourier components of the three-dimensional 
scattering-density distribution. Each Qh is perpendicular to a stack of parallel planes 
in real space, and 27r/IQhl (which has the dimensions of length) is the spacing be- 
tween those planes, commonly called the "d-spacing". Each h labels a set of planes 
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A ONE-DIMENSIONAL LATTICE 
AND ITS RECIPROCAL-SPACE 
REPRESENTATION 

Fig. 1. (a) The x-ray scattering density 

along one direction of molybdenum disulfide 

Illustrates a one-dimensional lattice with 

a unit cell of length a. (b) The first eight 

Fourier components (n = 0 to 7) in Eq. 1 

for the scattering-density function in (a). 

The wavelength of the nth component is :. 
Note that the phase of some of the waves is 

offset by 180 with respect to others. (c) The 

amplitudes Fn of the Fourier components from 

(b) plotted in reciprocal space. The reciprocal 

lattice is the set of points whose spacing 

is a ' ,  the reciprocal of the lattice spacing 

in real space. Note that some amplitudes are 

negative (those of waves shifted in phase by 

1 8 0  with respect to the waves with positive 

amplitudes). (d) The intensities 1 F,, 12, or 

S(Qn), plotted in reciprocal space. This 

pattern of intensities would be obtained from 

a diffraction experiment. This pattern reveals 

the size of the unit cell, but as explained in 

Fig. 2 does not yield a unique determination 

of the contents of the unit cell. 

Scattering Density 

0  0.5 a  1.0 a  1.5 a  2.0 a  

(b) Fourier Components 

(c) Fourier Amplitudes, F,, 
2 

(d) Fourier Intensities, 1 Fnl 

1 2 3 4 5 6 7  O Ã ‘ Ã ‘ Ã ‘ Ã  
a a a a a a a  

1 2 3 4 5 6 7  0  - - - - - - -  
a a a a a a a  

perpendicular to Qh. Together the h's specify all the sets of planes that pass through 
unit cells in a periodic way. Therefore just as in one dimension a sum over the wave 
vectors 27rnIa with integer n sufficed to describe a periodic p(x), in three dimen- 
sions a sum over the wave vectors Qh, or over the h, is all we need to describe p(r) 
for a crystal. The integer components hkl of h are identical to the Miller indices that 
crystallographers use to label faces along which crystals break. More important, the 
Qh are the special wave vectors Q at which Bragg scattering can occur, as defined in 
the primer. In the general case, illustrated in Fig. 3b, the Qh(= 27r(ha* + kb* + lc*)) 
are still perpendicular to stacks of planes and their lengths are still equal to 27r di- 
vided by the d-spacings. Note that the Qh must be defined in terms of the translation 
vectors of the reciprocal lattice, which are no longer simply parallel to the translation 
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(a) Scattering Density 

(b) Fourier Components 

0 0.5 a  1.0a 1.5a 2.0 a  
2 

(c) Fourier Amplitudes, Fn (d) Fourier Intensities, lFn1 

1 2 3 4 5 6 7  O Ã ‘ Ã ‘ Ã ‘ Ã  
a a a a a a a  

1 2 3 4 5 6 7  0 - - - - - - -  
a a a a a a a  

vectors of the real lattice but are more complicated functions of its parameters. 
Returning to the three-dimensional version of Eq. 1, we replace the product Qnx 

by the dot product Qh- r and normalize the Fourier series by the unit-cell volume Vc: 

1 
p(r) = - FI, exp[-i ( ~ h  . r)] .  

vc h 

(A specialist in this field would write equations such as this in crystallographic co- 
ordinates, using h instead of Q h  and defining r in terms of displacements along the 
crystal axes instead of along the Cartesian directions; furthermore the displacements 

THE PHASE PROBLEM IN 
CRYSTALLOGRAPHY 

Fig. 2. The same as Fig. 1, except that one 

Fourier component has been phase-shifted 

by 1 8 0  to produce an entirely different and 

fictitious scattering density for MoS2. The 

shifted wave and its amplitude are shown in 

red. This example illustrates the ambiguity 

that arises In diffraction experiments from 

measuring the magnitudes of the Fn's but not 

their phases. Although the plot of the Fn's 

changes, the plot of  IF,,^*, which Is analogous 

to a diffraction pattern, does not. Thus 

diffraction experiments can not distinguish 

the scattering density in Fig. 1 from that in 

this figure. Determining the phases Is called 

"solving the structure" because only then can 

the contents of the unit cell be determined. 
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UNIT CELLS IN REAL AND 
RECIPROCAL SPACE 

Fig. 3. (a) A unit cell In real space (solid lines) 

and its associated reciprocal unlt cell (dashed 

lines), for a three-dimensional lattice whose 

translation vectors, a, b, and c, are mutually 

orthogonal. The reciprocal-lattice translation 

vectors a*, b*, and c* are collinear with those 

of the real-space lattice, but their lengths are 

the reciprocals of the lengths of the real-space 

vectors. Note that a * = ~ ~ 1 ~ ~ / 2 7 r  is normal to 

the real-space be, or (1 OO), plane; similarly 

the other reciprocal-lattice translation vectors 

are normal to their corresponding planes. (b) 

A unit cell and reciprocal unlt cell for a lattice 

In which none of the translation vectors a, b, 

and c are orthogonal. The reciprocal-lattice 

translation vectors a*, b*, and c* are no longer 

collinear with their real-space counterparts 

but they are still normal to the planes that 

bound the unlt cell, and their lengths are the 

reciprocals of the spacings of those planes. 

(c) The mathematical formulas describing the 

reciprocal-lattice translation vectors and the 

wave vectors Qh. (d) An example of part of 

a set of planes and its &spacing in a crystal 

whose unit cell Is that shown in (b). The 

planes are labeled by h = (0 0 1) (parallel to 

the ab plane), and their &spacing is equal to 

c * l l .  In general Qh =. 27r(ha* + kb* + lc*) 

and QOOl = 27rc* is perpendicular to the 001 

(a) Orthorhombic Unit Cell 

Reciprocal-Lattice , Unit Cell 

(b) Trigonal Unit Cell 

(c) General Properties of Reciprocal-Lattice 
Translation Vectors and On 

a x b  b x c  b*- c x a  c*- a*= - 
a - ( b x c )  ' b * ( c x a ) '  c - ( a x b )  

a*.a=b*.b=c*.c = 1  

Q,, = 2n(ha*+ kb* + /c*^ 

Q,, -L. to h planes 

Q , = 2na* 

QOIO = 2nb* 

QOOl = 2nc* 

(d) Example of Set of Planes Defined by 
Unit Cell in (b) 

(0 0 1) planes 

would be divided by the lattice spacings to give the components of a dimensionless 
vector. This shorthand is convenient for many purposes and is used in the references 
cited at the end of this article.) Equation 2 might appear extremely similar to the 
Van Hove equation for diffraction, Eq. 2 in the Primer, but it is in fact a kind of in- 
verse. We will cover that relationship in a moment, but first we need to more fully 
consider what Eq. 2 implies about crystallographic mathematics. 

From Eq. 2, we see that the reciprocal-space description of a crystal in three 
dimensions is based on an array of points defined by the vectors Qh/27r and extend- 
ing to infinity in all directions from a single origin. These points are the comers of 
an infinitely repeating reciprocal unit cell. Each amplitude Fh (positive, negative or 
complex) is associated with the reciprocal-lattice sites Qh/27r. A complex amplitude 
can be represented with the usual real and imaginary parts or as a "phase shift" of 
the structure factor: 

Fh =Ah + iBb = \Fb\eiah, 

where a^ = tanl(fih/Ah). We will discuss the importance of phase shifts later in 
this section. 

Figures 4 and 5 give examples of two-dimensional periodic scattering densities 
and their representations in reciprocal space (their Fourier transforms). In two dimen- 
sions the reciprocal-lattice vectors are perpendicular to sets of parallel lines (rather 
than planes) in real space. Larger h values correspond to more closely spaced lines. 
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As Figs. 4 and 5b show, the locations of the reciprocal-lattice points are determined 
solely by the size and shape of the real unit cell, whereas the intensities I F ~ I *  reflect 
the unit cell's contents. The relatively few Fh with small lhl (those closest to the 
origin) give only the gross features of the structure, that is, the features whose size 
is roughly on the order of the unit-cell dimensions. The much more numerous Fh 
with large lhl contain information on the fine details within the unit cell, for example, 
exact atom locations and anisotropic features of the thermal motion. 

Determining Crystal Structures 

A property of Fourier series is that they can be "inverted." In crystallography, 
this transformation goes from the real-space to the reciprocal-space description. Thus, 
the inverse Fourier transform of Eq. 2 gives the amplitude in terms of the scattering 
density: 

The amplitude is first expressed as an integral to indicate that all of the space within 
the unit cell is used. It is then expressed as a sum by using the convolution proper- 
ties of Fourier integrals and series. A convolution is a type of multiplication. hi this 
case it is used to break up the integral into a sum over all the atoms in the unit cell; 
the coefficientfi of the term for the ith atom is called the "scattering factor" of that 
atom. The scattering factor of an atom is the Fourier transform of the scattering den- 
sity in its vicinity and in this expression includes the "smearing" effect of any oscil- 
lation (or thermally induced motion) of the atom about its average position. The so- 
called coherent scattering length bcoh,i of neutron scattering is a scattering factor that 
does not include the effects of thermal motion. (This article deals only with coher- 
ent scattering, so in reference to scattering lengths the word "coherent" and the sub- 
script "coh" will be suppressed from now on.) The Fourier transform represented in 
Eq. 2 implies that if the Fh are known, one can calculate the scattering density p(r), 
which maps the locations and thermal motions of the atoms. Similarly, the transform 
in Eq. 4 implies that, if the atom positions and thermal motions are known, then the 
Fh can be calculated. 

A SQUARE LATTICE 
AND ITS RECIPROCAL-SPACE 
REPRESENTATION 

Fig. 4. A lattice in real space (left) with fourfold 

rotational symmetry and the corresponding 

reciprocal lattice (right), which has the same 

point symmetry (see "Crystal Symmetry 

Groups"). The intensities IF,,I* depicted on 

the reciprocal lattice differ from each other 

because the real-space unit cell has six point 

scatterers rather than one. Specifically, the 

pattern of intensities reflects the sixfold 

symmetry of the contents of the real unit cell. 

(Photos reproduced with permission from 

Cornell University Press.) 
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SIMPLE VERSUS COMPLEX UNIT CELL IN REAL AND RECIPROCAL SPACE 

Fig. 5. Two-dimensional scattering densities 

(left) and their corresponding intensity rep- 

resentation in reciprocal space (right). The 

real-space lattice in (a) is less symmetrical 

than that in Fig. 4, having two-fold rotation 

and inversion. The real-space figure shows a 

unit cell and three sets of parallel lines (the 

two-dimensional equivalent of parallel planes 

in three dimensions) with the &spacings of 

those lines. Note that the set of lines indexed 

h = (1 0) is not drawn through the point scat- 

terers, because one need not think of those 

lines as locations of atoms in a crystal, but 

rather as defining periodic density variations 

with a definite orientation and spacing. The 

other sets of lines are drawn through the point 

scatterers for clarity. The Oh vectors corres- 

140 

ponding to the labeled sets of lines are shown 

in reciprocal space (right), along with a recip- 

rocal unit cell. Each Qh vector is perpendicular 

to the set of lines that h indexes, and its 

length lQhl is inversely proportional to the d- 
spacings of that set of lines. Because the unit 

cell contains only a single point scatterer, the 

intensities I/T,12 on the reciprocal lattice are all 

identical. (b) A real-space lattice in which each 

point in (a) has been replaced by a five-point 

pattern or "molecule." This scattering density 

does not even have inversion symmetry. The 

points of its reciprocal lattice are in the same 

positions as those of the reciprocal lattice in 

(a), but here the intensities l6l2 vary. Thus 

the locations of the reciprocal-lattice points 

provide information about lattice geometry 

whereas the intensities provide information 

about the contents of the unit cell. The heavy 

lines correspond to h = (0 1); they and the light 

lines together have h = (0 3). (The reciprocal- 

lattice figures were made by shining a laser 

beam through masks with holes punched 

out at the real-lattice sites and recording the 

diffracted light on film. With this method one 

can photograph much of the two-dimensional 

reciprocal lattice at once. Unfortunately, 

scattering neutrons analogously from a plane 

of atoms is not feasible. Neutrons interact so 

weakly with matter that a beam perpendicular 

to a single plane of atoms would pass through 

practically unaffected.) (Photos reproduced 

with permission from Cornell University 

Press.) 
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The Van Hove equation for elastic-scattering intensities given in the primer is 
the convolution of Eq. 4 with itself: 

where Ih is the measured scattering intensity at Q = Qh. Equation 5 shows how 
elastic-scattering experiments directly measure the lFh12, the squares of the magni- 
tudes of the structure factors. In the last form of the convolution, the double sum- 
mation covers all interatomic vectors in the crystal, which matches our picture of 
coherent scattering as arising from interference effects between atoms. The double- 
integral form also reflects interference effects, since the largest contributions come 
from those p(ri)p*(rj) products such that ri and rj correspond to atomic positions. 
In this formulation of the Van Hove equation, we recognize that both// and p(r) can 
be complex and that /; has a Q dependence, so we keep them inside the integral and 
the sum. Although bi and p(r) are rarely complex in neutron diffraction, they are 
quite often complex in x-ray scattering because atoms can absorb x rays and because 
x-ray wavelengths are comparable to the size of the electron clouds from which they 
scatter, whereas neutrons scatter from the nearly point-like nuclei. In this discussion 
we have seen that by starting from a rather mathematical description of a crystal, we 
can interpret its coherent scattering properties for either x rays or neutrons in a par- 
ticularly clean way. 

The Van Hove equation gives us the relationship between the array of inter- 
atomic vectors and the observed intensities but, it also points out a major difficulty. 
Using Eq. 2 requires knowing both the real and imaginary parts of the Fh, but a 
diffraction experiment yields only the magnitudes of the IFh[' and not the phases 
a h .  Without the phases we can not determine the positions of the atoms in the unit 
cell or even their number. The central problem of crystallography is recovery of the 
phases, so that the Fourier transform in Eq. 2 can be performed. The solution of this 
problem, known as solving the crystal structure, is the subject of considerable effort 
by crystallographers. The reader is encouraged to examine some of the references 
listed at the end of this article. Figure 2 is a one-dimensional illustration of the am- 
biguity. A new hypothetical scattering density p ( ~ )  has been constructed by shifting 
the phase of the third Fourier component in Fig. l a  by TT radians. This shift is equiv- 
alent to multiplying that wave's amplitude, F3, by -1, as seen in the graph of the 
Fh in reciprocal space, Fig. 2b. A phase shift by some angle a other than 0 or TT is 
equivalent to multiplying F3 by the complex number exp(ia)-hard to depict on the 
page. (Mathematically inclined readers can convince themselves that the Fh's are 
real if and only if the unit cell is centrosymmetric, as defined in "Crystal Symmetry 
Groups.") In any case, the phase shift does not affect the value of M2 (Fig. 2c). 
Since diffraction experiments provide only the IFh\', there is, in principle, no way of 
knowing whether the measured reciprocal lattice arises from the real-space scatter- 
ing density of Fig. l a  or from the quite different density of Fig. 2a. In practice, the 
crystallographer realizes from his or her knowledge of physics and chemistry that the 
density in Fig. 2a makes no sense. Solving the structure of more complicated materi- 
als is not so easily done. Then the question is how to directly use the 1 ~ ~ 1 ' .  

One possible use is to apply a Fourier transform to the Van Hove equation to get 
a mapping of the interatomic vectors: 

Equation 6 is effectively a map of the p(ri)p(r,) product for all vectors (ri-r,). 
The transform can be performed with no knowledge of the crystal structure apart 
from the unit-cell dimensions and point symmetry, which derive directly from the 
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NEUTRON SCATTERING LENGTHS 

Fig. 6. Neutron scattering lengths for all 

the elements from hydrogen through xenon. 

Every fourth element is marked. Each element 

is made up of its natural mixture of isotopes. 

Unlike x-ray scattering factors, neutron 

scattering lengths do not increase linearly 

with atomic number. Instead they vary 

erratically, not only from element to element 

but from isotope to isotope. 

diffraction data. In crystallographic parlance P(ri - r,) is known as the Patterson 
function. It provides one of the routes to solving the crystal structure. Since the 
p(ri)p(r,) product is largest for vectors between strongly scattering atoms, the highest 
features in the Patterson function correspond to vectors between pairs of such atoms 
and can generally be interpreted to give their locations. This technique for solving 
crystal structures, known as the heavy-atom method, is one of the oldest techniques 
known. It is generally applicable only to x-ray diffraction data for materials whose 
unit cells are composed of one strongly scattering heavy atom (typically a metal) and 

a large number of more weakly scattering light atoms (C, 0, N, etc.). The heavy- 
atom positions can then be applied to Eq. 4 to get an estimate of the phase angles to 
use in Eq. 2, which produces an approximation to p(r). This scattering-density map 
usually shows enough atom postions to repeat the process and expand the solution 
to include all the remaining atom positions, thus solving the structure. The heavy- 
atom method is not so useful in the case of neutron scattering because the scattering 
lengths of all atoms are the same within an order of magnitude (Fig. 6). The other 
methods for solving crystal structures have their roots in the properties of the Pat- 
terson function and its inverse, the Van Hove equation. The only exception is the 
time-honored method of just guessing atom positions and using Eq. 4 to judge the 
accuracy of the guess by comparing the calculated with observations. 

The Geometry of Diffraction in Reciprocal Space 

Let's consider diffraction experiments that use monochromatic beams, that is, 
those such that all the neutrons or x rays have the same wavelength A. Then, as 
noted in the discussion following Eq. 3 of the primer, one can see Bragg peaks only 
when the planes that produce them are properly oriented with respect to the beam. 
In a single-crystal diffraction experiment, the crystal is rotated, in an apparatus like 
that shown in Fig. 7, so as to generate Bragg reflections with various values of h. 
Then the detector is positioned to measure their 1 ~ ~ 1 ~ .  A powder experiment involves 
many crystals at once, all randomly oriented. We need to understand the effect of 
different crystal orientations in both single-crystal and powder experiments. 

As we have seen, the Qh vectors are perpendicular to sets of planes of the crys- 
tal, and the h vectors correspond to the Miller indices that describe its faces. Thus 
there is a connection between the physical appearance of a crystal and its reciprocal- 
space description. Real space and reciprocal space are "hooked" together (see Fig. 3) 
so that every feature found in real space corresponds to a feature in reciprocal space 
via Fourier transformation. Therefore when we rotate the crystal, we also rotate its 
reciprocal lattice. 
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Figure 8 depicts Bragg scattering in reciprocal space. In terms of the reciprocal- 
lattice vectors, we can write Bragg's law simply as IQI = lQhl, using IQI = 47r(sin (?)/A 
(see Fig. 5a of the Primer) and IQh = 27r/dh where dh is the spacing of the planes 
labeled by h. Thus depicting the elastic-scattering triangle (again in Fig. 5a of the 
primer) in reciprocal space provides a useful geometric construction (here we mul- 
tiply all the reciprocal-lattice distances by 271- in order to compare them with wave 
vectors). Since for elastic scattering the initial and final wave vectors are equal in 
magnitude, or lki 1 = lkf I, all the possible kf9s fall on the surface of a sphere with ra- 

A \ X Rotation R~~~ rfir^ 

Diffracted 
Beam 

oo Rotation 

26 Rotation 

dius 271-/A, commonly called the Ewald sphere. As seen in Fig. 8, the Ewald sphere 
passes through the origin because Q = 0, or equivalently k; = kf, corresponds to elas- 
tic scattering in the forward direction. The Qh of a reciprocal-lattice point that falls 
on the Ewald sphere is equal to the Q at which Bragg scattering occurs; the scatter- 
ing angle 20 between k; and kf is shown on the figure. The construction makes it 
easy to see the effect of rotating the crystal. When the crystal rotates, the reciprocal 
lattice rotates with it so that each of its points moves on an arc centered at the ori- 
gin. As each point passes through the Ewald sphere, diffraction occurs for that Qh at 
the corresponding scattering angle 0. This is the basis for conventional single-crystal 
diffraction experiments. The intensity of the scattering seen by the detector when Qh 
passes through the Ewald sphere is proportional to but it also depends on the 
angle that the Qh arc makes with the sphere surface (the so-called Lorentz correction 
to the intensities). 

Because a powder consists of a multitude of small crystals, the reciprocal-space 
picture has to be modified from that given for a single crystal. Instead of an array of 
points, the Qh vectors define a set of nested spheres, each one corresponding to the 
multitude of directions that each Qh points for all the crystals that make up the pow- 
der (Fig. 9). Then the orientation of the powder sample is immaterial, and the Ewald 
sphere for the illuminating radiation intersects all the Qh spheres with lQhl < 4 4 A .  
Thus diffraction occurs simultaneously at a variety of angles. The observed intensity 
again depends on \ F ~ \ ~ ,  and the Lorentz correction depends on the angle at which the 
Ewald sphere and the Qh sphere intersect. In addition, the crystal symmetry may re- 
quire that related h vectors have the same length and therefore that their respective 
spheres exactly coincide. For example, in the cubic crystal structure for salt (NaCl), 
the Qh vectors with h = (1 0 O), (0 1 O), (0 0 I), (1 0 O), (0 - 1 O), and (0 0 - 1) all have 
identical lengths and identical F! values. The measured intensity at the correspond- 
ing angle is proportional to 61~1001~; the factor of 6 is the reflection multiplicity. A 
powder pattern then contains all the intensity information inherent in the reciprocal 

SINGLE-CRYSTAL DIFFRACTOMETER 

Fig. 7. A single-crystal diffractometer with 

three axes for positioning the crystal in the 

incident beam so that a particular set of 

planes in the crystal scatters the incident 

radiation in the plane containing the detector 

arm. The detector angle can be set at the 

proper 20 to observe the reflection (once a 

preliminary x-ray experiment has determined 

the orientation and size of the reciprocal unit 

cell). 
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SINGLE-CRYSTAL DIFFRACTION 
IN RECIPROCAL SPACE 

Fig. 8. A reciprocal-space representation of 

single-crystal diffractlon of monochromatic 

radiation of wavelength A. A sphereof radius 

lkil = 27r/A is drawn through the origin of 

the reciprocal lattice-the "Ewald sphere." 

Since diffractlon is an elastic process, the 

wave vectors of the incident and scattered 

radiation, ki and kf, have equal length and can 

be drawn so that they are radii of the sphere. A 

few of the points of the reciprocal lattice touch 

the surface of the Ewald sphere. Note that the 

Qh vector for each such point coincides with 

Q, the third side of the scattering triangle. 

In other words, Q=Qh (a version of Bragg's 

law) and diffraction occurs at the angle 20 

between ki and kf. Rotation of the crystal 

corresponds to rotating the reciprocal lattice, 

causing other points to touch the Ewald 

sphere and diffraction to occur at other 

scattering angles. 

Reciprocal- 
Lattice 
Origin 

lattice, but all the directions of the vectors are lost along with the phases of the struc- 
ture factors. This situation was neatly summarized long ago by W. H. Bragg in his 
1921 Presidential Address to the Physical Society. 

All the spectra of the different planes are thrown together on the same dia- 
gram, and must be disentangled. This is not so difficult as it might seem. 
. . . The spectra of the organic substances show how very diversified they 
are, and illustrate the power of a method of analysis which promises to be 
of great use, since every crystal has its own characteristic spectrum. 

Despite Bragg's optimism about interpretation of a powder pattern, only recently 
has there been any real progress in powder pattern analysis. The classical use of 
x-ray powder patterns has been analytical, to enable identification of crystalline phases 
in an unknown mixture. This is usually achieved by matching the line positions and 
relative intensities against a compendium of such values obtained by measuring pat- 
terns of pure materials. Commercial x-ray powder diffractometers come with soft- 
ware packages that do the matching automatically. The computer file of standard 
materials maintained by the Joint Commission on Powder Diffraction Standards now 
contains over 50,000 entries. Our problem, however, is to unravel a powder pattern 
and extract the crystal structure responsible for the observed intensity distribution. 

Crystal Structures from Powder Patterns 

For a long time the only way a powder pattern could be interpreted to give 
the crystal structure was a variation on the methods used for single-crystal diffrac- 
tion data. The first step consists of identifying the vectors h (or h,  k ,  I ) ,  that give 
rise to the peaks in the pattern thus identifying the crystal lattice and its parameters 
a ,  b, and c. This process, known as indexing the pattern, can be complex for low- 
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(a) Reciprocal-Space Geometry 

POWDER DIFFRACTION IN 
RECIPROCAL SPACE 

(b) Powder-Diffraction Pattern 

symmetry crystals but is quite easy for cubic structures. In that case the relationship 
between h and d-spacing gives 

where a is the cubic-lattice spacing. One need only number the peaks starting from 
the origin, skipping those numbers that are not sums of three squares of integers 
(7, 15, 23, 28, etc.), and then tally up the possible hkl combinations for each peak. 
Then the intensities of individual peaks are measured and converted to structure fac- 
tor magnitudes. These could then be used to "solve" the structure (remember this is 
a puzzle because of the lost complex character of Fh). The main problem with this 
technique is that only for very simple structures are the peaks in a powder pattern 
sufficiently separated to allow measurement of individual peak intensities. One can 
index the pattern of almost any substance and thus find a description of the lattice. 
However, the peaks are usually so heavily overlapped that extraction of individual 
peak intensities is impossible, and the magnitudes of most of the individual structure 
factors are unknown. 

Fig. 9. (a) A reciprocal-space representation 

of powder diffractlon of monochromatic 

radiation. The reciprocal-lattice points for a 

powder are smeared out onto the surfaces 

of a nested set of spheres, all of which 

intersect the Ewald sphere if dh > A/2. 

Thus diffraction from all planes whose d- 

spacing is greater than or equal to \/2 can 

be recorded in a single measurement with 

single-wavelength radiation. (b) The powder 

diffraction pattern that would be recorded 

from a crystal having this reciprocal lattice. 

For clarity, the intensities are shown here but 

are not plotted on the reciprocal lattice in (a) 

(whereas they were in Figs. 4 and 5). 
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OVERLAPPING PEAKS IN A POWDER 
DIFFRACTION PATTERN 

Fig. 10. A small segment of a time-of- 

flight powder-diffraction pattern showing 

the total intensity and contributions to It 

from background and from several Bragg 

reflections. Note that four Bragg reflections 

contribute to the left-most observed peak. 

About twenty years ago H. M. Rietveld suggested a solution to this problem. He 
recognized that a mathematical expression could be written to represent the observed 
intensity Ic at every position Q in a powder-diffraction pattern: 

This expression has a contribution from the background and from each of the Qh that 
are in the vicinity of Q (Fig. 10). Unlike the stick-diagram representation of a pow- 

Observed intensities 

4300 4400 4500 4600 
Time of Flight (p) 

der pattern shown in Fig. 9, a real powder pattern suffers from line broadening, so 
diffraction from the planes labeled by h contributes not only at Qh but at all nearby 
Q. The pattern in Fig. 10 also exhibits line anisotropy, which arises from the asyrn- 
metry of the spallation-neutron pulse. In the Rietveld method one models the ob- 
served pattern by considering the factors that affect both the line shape and its inten- 
sity. The adjustable parameters for the model are then refined by a nonlinear least- 
squares process that is similar to the process very commonly used in single-crystal x- 
ray structure analysis. The 1Fhl2 parameters obtained from the fit are a reconstruction 
of the real 1Fhl2; the parameters for line broadening and anisotropy provide inforrna- 
tion about particle sizes, structural defects, and other phenomena that distort the ideal 
Bragg pattern. 

This approach has been so successful that it has led to a renaissance in powder 
diffraction, and this technique of treating powder-diffraction data is now known as 
Rietveld refinement. 

How Are X-Ray and Neutron Diffraction Complementary? 

In generating a model to perform the inverse Fourier transform shown in Eq. 4, 
we postulate a set of atom positions and assign a scattering factor/ to each atom, 
which is the Fourier transform of the scattering density about its position. However, 
because x rays and neutrons scatter by different mechanisms, the corresponding scat- 
tering factors are quite different. Neutrons are scattered primarily by atomic nuclei. 
Since the nuclear dimensions are roughly 100,000 times smaller than the neutron 
wavelength, the nuclei act like point scatterers and neutron scattering factors (scatter- 
ing lengths or b's) are independent of IQI. Also, nuclear scattering is a combination 
of "potential" scattering and "resonance" scattering. Potential scattering depends on 
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the number of nuclear particles and resonance scattering results from neutron absorp- 
tion by the nucleus. These two factors sometimes add and sometimes subtract to give 
neutron scattering lengths that vary erratically from one element to another and from 
one isotope to another (see Fig. 6). 

On the other hand, x-ray scattering occurs primarily by interaction with the elec- 
trons that surround an atom. Consequently, the strength of the scattering depends 
on the number of electrons that surround an atom so that the scattering power of an 
atom increases with atomic number. Thus, x-ray scattering factors are usually ex- 

Co 
Fe 
Ti 

Co' 
MQ 
0 

pressed as some multiple of the scattering power of one electron. In addition, the 
spatial extent of the electron cloud around an atom is roughly the same as the x-ray 
wavelength, so the x-ray scattering factor falls off with increasing IQI. The scattered 
intensity also has a contribution from anomalous dispersion when the x-ray energy 
is near an absorption edge for the scattering atom. The absorption edge for an inner 
electron shell of an element is the minimum energy at which an atom can absorb an 
x ray and consequently eject an electron from that shell. The scattering factor can be 
strongly modified by this process and acquire both real and imaginary components 
that are only partially dependent on I Q I .  Thus the scattering factors for x rays look 
like those shown in Fig. 1 1. 

~ i v e n  these differences we would expect x-ray and neutron powder-diffraction 
patterns to be very different. Figure 12 shows idealized x-ray and neutron patterns 
calculated for MgTiOs, the primary constituent of the mineral geikielite. The patterns 
were generated for essentially identical diffractometer experiments (impossible in real 
life) but are startlingly different. In fact, the strongest peak in the x-ray pattern (at 
about 32') is completely absent in the neutron pattern! The reason for the extreme 
difference between the two patterns lies in the scattering factors for titanium, mag- 
nesium, and oxygen for x-rays and neutrons. The x-ray scattering factors are simply 
proportional to the atomic number; thus fri > f~~ > fo. However, the neutron scatter- 
ing length of titanium is negative and that of oxygen is only slightly larger than that 
of magnesium, or bo > > 0 > brr Therefore the neutron structure factor for 
each reflection is very different from the x-ray structure factor, and the peak heights 
in the two powder-diffraction patterns are very different. 

The complementarity of x-ray and neutron powder patterns then eliminates one 
of the most basic problems in crystal-structure analysis. Because the complex na- 
ture of the structure factors is lost in any diffraction measurement and the directional 

X-RAY SCATTERING FACTORS 

Fig. 11. X-ray scattering factors for the atoms 

0, Mg, Ti, Fe, and Co. The gray curve labeled 

c o  gives the scattering factor of Co when the 

energy of the Incident x rays is a few eV below 

the K absorption edge of Co. At this energy, 

anomalous dispersion reduces the scattering 

factor by about 6 electrons at ail Q. 
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DIFFERENCES BETWEEN X-RAY AND 
NEUTRON POWDER PATTERNS 

Fig. 12. A comparison of simulated x-ray 

and neutron powder patterns for MgTi03 at a 

wavelength of 1.54 A. The neutron scattering 

lengths of Mg, Ti, and 0 are very different 

from their x-ray scattering factors, so peaks 

that are prominent in one pattern are small 

or even invisible in the other. Thus the two 

patterns give different information about the 

structure of the crystal. 

character of reciprocal space also is lost in a powder-diffraction experiment, the 
Rietveld refinement of a single powder pattern may not yield a unique answer. Clearly, 
if a crystal-structure model of atom positions, etc., produces calculated patterns that 
match both a neutron powder pattern and an x-ray powder pattern, that model is 
more likely to be unique (and correct). To capitalize on this notion we have devel- 
oped a computer program that will perform a combined x-ray and neutron Rietveld 
refinement of a crystal structure. The remainder of the article presents some applica- 
tions of this approach. 

(a) Neutron Powder Pattern (b) X-ray Powder Pattern 

40 

29 (degrees) 29 (degrees) 

Examples of Combined Rietveld Refinements 

One of the most difficult structural problems is to determine the identity of the 
atoms that occupy a particular site within a crystal structure. Generally an atom is 
identified by its scattering power relative to the other atoms in the structure. In addi- 
tion, the distances between it and its nearest neighbors also help in this identification 
process. The large body of structural work in the literature provides the expected in- 
teratomic distances for a particular pair of atoms. The problem becomes much more 
difficult, however, when more than one kind of atom can occupy a particular site. 

The 123 High-Temperature Superconductor. Our first example of an atom- 
identification problem concerns the high-Tc 123 superconductor YBa2Cu307_.c. This 
material had been investigated at great length by many groups throughout the world, 
and its structure had been established with little ambiguity within a few months of its 
discovery by Chu and coworkers at the University of Houston. Almost all structural 
results came from Rietveld refinements of neutron powder-diffraction data obtained 
at either reactor or spallation sources, and the atom identities were assigned largely 
by analogy to other structures as well as by their scattering powers. By unfortunate 
coincidence the neutron scattering lengths of yttrium and copper are virtually iden- 
tical, leaving open the possibilities that the assignments of these two atom locations 
were in fact reversed or that each site was sometimes occupied by yttrium and some- 
times by copper. Either case would have considerable impact on any theory proposed 
to explain the superconductivity. However, the x-ray scattering factors for these two 
atoms are very different, and by combining some x-ray powder data with the neutron 
data one can easily resolve this ambiguity. 
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Here at LANSCE we performed both time-of-flight neutron and x-ray powder- 
diffraction experiments, collecting six powder patterns for this material The entire set, 
comprising about 25,000 data points, was subjected to a combined Rietveld refine- 
ment involving approximately 120 adjustable parameters. These parameters included 
the 33 needed to describe the crystal structure of Y B ~ ~ C U ~ O ~ _ ~ ,  namely, atomic po- 
sitions, fractional occupancies, thermal parameters, and lattice parameters. The rest 
characterized details of the powder-diffraction patterns and included coefficients for 
the background, the peak shapes, and intensity correction factors as well as the six 
scaling factors. The resulting structure, shown in Fig. 13, was dramatically more pre- 
cise than any of the previous single-measurement results and satisfactorily resolved 
the metal-site occupancy issue. We found no evidence of any interchange between 
the metal atoms on their respective sites. Our result had been expected from crystal- 
chemistry considerations based on comparison of interatomic distances and ionic 
radii, but this work provided a clear and unambiguous determination. 

Vanadium-Doped Iron-Cobalt Alloy. The atom-identification problem in our sec- 
ond example is considerably more difficult. The alloy FeCo is well known as an ex- 
cellent soft ferromagnet with a high saturation magnetization and low permeability 
and is of great use commercially. To improve its machinability, a small amount of 
vanadium (about 2%) is added to the alloy. This alloy is also a well-known exam- 
ple of a second-order 0-brass transition: At high temperatures the two metals occupy 
sites of the body-centered cubic structure at random, but below 720Â° the alloy or- 
ders so that atoms of the two metals tend to occupy alternate sites (Fig. 14). It had 
been presumed that in the low-temperature phase the vanadium atoms randomly oc- 

A HIGH-T- SUPERCONDUCTOR 

Fig. 13. A perspective drawing of the structure 

of YBaaCu307-y as deduced from a combined 

x-ray and neutron Rietveld refinement. The 

ellipsoids represent the extent of 99% of 

the atomic thermal motion. The Cu and 0 

atoms are labeled with numbers to distinguish 

inequivalent locations. Combined x-ray 

and neutron data proved that there is no 

interchange between the Cu atoms at these 

sites and the Y atoms at the site in the middle 

of the figure. 
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ORDER-DISORDER TRANSITION 
IN THE ALLOY FeCo 

Fig. 14. A schematic representation of the 

/3-brass transition In FeCo, the iron-cobalt 

alloy containing equal quantities of Fe and 

Co. In the high-temperature form on the left, 

each site Is occupied at random by either 

Fe or Co. The alloy becomes ordered below 

7 2 0  C to form the structure on the right. 

Each Fe atom is surrounded by Co atoms, just 

as the Co atom in the figure is surrounded by 

Fe atoms. 

cupy either the Fe site or the Co site in the structure, but no definitive determination 
had been attempted. Because the FeICo ordering is incomplete, solution of the prob- 
lem required determining the fraction of the Fe-rich and the Co-rich sites occupied 
by Fe, Co, and V. This is not possible with a single-radiation experiment and is ex- 
tremely difficult with a two-radiation experiment. Conventional x-ray powder data is 
particularly insensitive to the ordering because Fe and Co have essentially the same 
x-ray scattering factors and that for V is only about 15% smaller. In fact the @brass 
transition for this material is virtually invisible to x rays. We resolved this site- 

Above 720Â° Below 720Â° 

distribution problem by collecting neutron time-of-flight and shortwavelength x-ray 
data sets that covered a range of Q sufficient to independently determine the thermal- 
motion parameters. In addition, we performed synchrotron x-ray experiments at Stan- 
ford University. The tunability of synchrotron x-ray radiation allowed us to strongly 
modify the x-ray scattering factors of the three metals by collecting powder data near 
each of their respective K absorption edges. The strong anomalous dispersion re- 
duced the x-ray scattering factor for each metal in turn by about 6 to 8 electrons 
from the dispersionless value given in Fig. 11 and thus provided sufficient contrast 
between that atom and the others. The entire suite of data, consisting of some 18 
powder patterns with a total of about 22,000 data points, was subjected to a com- 
bined Rietveld refinement to determine the fractional occupancies for Fe, Co, and V 
at the two sites. The result clearly showed that the V strongly preferred the Co-rich 
site over the Fe-rich site and that for this particular sample the FeICo ordering was 
8 0 %  These results are not obtainable by any other means. 

T*-Phase High-Temperature Superconductors. Our final example is an extension 
of the idea used for the FeCo alloy. The problem is to determine the site preferences 
of the strontium, lanthanum, and rare-earth ions in the so-called T*-phase supercon- 
ductors. These materials have the general formula Lai.8_xRxSro.2Cu04, where R is 
a rare-earth metal, and all have approximately the same structure. They have been 
synthesized with all the rare earths between Pr and Ho as R. Only those with Sm, 
Eu, and Gd and x E 0.9 form bulk superconductors and then only when annealed 
at high O2 pressures. As shown in Fig. 15, one end of the T-phase unit cell resem- 
bles the K2NiF4-like structure of La2Cu04_x (called the T-phase), the first high-Tc 
material to be discovered (by Bednorz and Miiller). The other end of the unit cell re- 
sembles the structure of the so-called TI superconducting phase, Ce-doped Nd2Cu04. 
Each end has sites for the Sr, La, and R ions; the sites at the T-phase-like end are 
larger than those at the TI-like end. Consideration of the various atomic radii and 
the metal-oxygen distances for the two types of sites had led to the assumption that 
the larger ions (s?+ and La3+) occupy the larger T-phase sites, whereas the smaller 
rare-earth ions and the remaining La3+ occupy the smaller TI-phase sites. We ex- 
amined the superconductor L ~ ~ . ~ ~ ~ s ~ ~ . ~ S ~ ~ . ~ C ~ O ~  with neutrons at LANSCE and 
with synchrotron radiation at the National Synchrotron Light Source at Brookhaven 
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National Laboratory. We tuned the synchrotron radiation to absorption edges of La, 
Sm, and Sr to sufficiently modify their scattering factors. We also collected a fourth 
x-ray data set at a wavelength far from any edges. We found that the ordering exists 
but is incomplete: About 10% of the Sm3+ ions appear on the larger T site, presum- 
ably because the ions are nearly the same size, with a Sm3+/~a3+ ionic-radius ratio of 
0.935. We also examined another superconductor, Lao.9Gdo,9Sro.2Cu04, in which the 
ions are of more disparate sizes ( ~ d ^ / ~ a ~ +  = 0.919). The strong absorption by Gd 
precluded collection of a neutron powder pattern, but the four x-ray data sets were 

T Phase 

sufficient to unambiguously determine the two site distributions for the three kinds 
of atoms. In this case the ions were well segregated into the two sites by their size. 
Since the two materials have similar superconductivity properties, this ordering evi- 
dently has little effect on the superconductivity. 

Conclusion 

As one can see from this discussion, the science of powder diffraction has come 
a long way from its beginnings as a largely analytical tool. The Rietveld refinement 
technique has enabled the determination of crystal structures of considerable com- 
plexity and in fact was the first to accurately reveal the structures of the supercon- 
ducting copper oxides. The power of this method can be further enhanced by proper 
combination of diffraction data from several radiation sources to improve the inter- 
atomic contrast and eliminate the ambiguities in powder structure refinements. i 
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T* Phase 

* - P H A S E  SUPERCONDUCTOR 

Fig. 15. The structure of the T*-phase 

superconductor (right) combines those of 

the f and T phases, two other structures 

of M2Cu04 (where M can be a lanthanide 

element or Sr in the compounds of interest 

for superconductivity). The f phase (left) has 

Ce-doped Nd on the M sites (the parentheses 

around the "Ce" symbol indicate that the 

amount of Ce is much less than the amount of 

Nd). The T phase (middle) has larger sites for 

M, which are occupied by Sr-doped La. The 

T* phase has La, Sr, and Gd on the M sites. 

The larger La and Sr Ions occupy the sites In 

the top half of the unit cell, which are identical 

to those in the T phase. The smaller Gd (dark 

gray) ions and the rest of the La occupy the 

smaller T' sites in the bottom half. 
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Crystal Symmetry Groups 

s ymmetry plays an important role 
in crystallography. The ways in 
which atoms and molecules are 

arranged within a unit cell and unit cells 
repeat within a crystal are governed by 
symmetry rules. In ordinary life our 
first perception of symmetry is what 
is known as mirror symmetry. Our 
bodies have, to a good approximation, 
mirror symmetry in which our right side 
is matched by our left as if a mirror 
passed along the central axis of our 
bodies. Our hands illustrate this most 
vividly; so much so that the image is 
carded over to crystallography when 
one speaks of a molecule as being either 
"right9'- or "left"- handed. Those of us 
who live in an old-fashioned duplex 
will also recognize that such houses are 
built with mirror symmetry so that the 
arrangement of the rooms, hallways, and 
doors are disposed about an imaginary 
mirror passing through the common 
wall between the two halves of the 
house. There are many other examples 
of this kind of mirror symmetry in 
ordinary life. We can also see more 
complex symmetry in the patterns 
around us. It can be found in wallpaper 
patterns, floor-tile arrays, cloth designs, 
flowers, and mineral crystals. The basic 
mathematics of symmetry also applies 
to music, dance (particularly folk and 
square dance), and even the operations 
needed to solve Rubik's cube. 

The rules that govern symmetry are 
found in the mathematics of group the- 
ory. Group theory addresses the way in 
which a certain collection of mathemat- 
ical "objects" are related to each other. 
For example, consider all the positive 
and negative integers and zero. They 
can constitute a group because under 
certain circumstances the relationships 

rational numbers is a group under 
multiplication, and both it and the 
integer group already discussed are 
examples of infinite groups because 
they each contain an infinite number 
of elements. 

between the integers obey the rules of In the case of a symmetry group, 
group theory: an element is the operation needed to 

There must be defined a procedure for 
combining two elements of the group 
to form a third. For the integers one 
can choose the addition operation so 
that a + b = c is the operation to be 
performed and a ,  b, and c are always 
elements of the group. 
There exists an element of the group, 
called the identity element and de- 
noted I, that combines with any other 
element to give the second one un- 
changed. In the case of the integers, 
the identity element is zero because 
any integer plus zero gives that inte- 
ger (a + 0 = a). 
For every element of the group, there 
exists another element that combines 
with the first to give the identity 
element; these are known as inverse 
elements. The negative integers 
constitute the inverses of the positive 
integers because their pairwise sums 
all equal zero, the identity element 
(a + (-a) = 0). 
Group operations in sequence obey 
the associative law. For addition of 
integers this means that (a + b) + c = 
a+(b+c). Notice that the commutative 
law, a +b = b +a ,  is not required even 
though it is true for this particular 
group. 
You might be tempted to say that the 

positive integers, when related by mul- 
tiplication (a x b = c), also constitute 
a group with the identity element now 
being one (a x 1 = a). In fact, the pos- 
itive integers do not constitute a group 
under these conditions because, to obey 
the group-theory rules, the noninteger 
inverses ( l l a )  as well as all the ratio- 
nal fractions (b/a) would have to be 
included. The expanded set of positive 

produce one object from another. For 
example, a mirror operation takes an 
object in one location and produces 
another of the opposite hand located 
such that the mirror doing the operation 
is equidistant between them (Fig. 1). 
These manipulations are usually called 
symmetry operations. They are com- 
bined by applying them to an object se- 

THE MIRROR SYMMETRY OPERATION 

Fig. 1. A pair of left- and right-"footed" boots 
illustrates the mirror-plane symmetry operation. 
The right boot can be positioned identically 
on the left boot by reflection through a mirror 
between them and vice versa. 

quentially. For example, doing a mirror 
operation twice on a right-handed object 
will, with the first operation, move it to 
the left-handed position, and with the 
second operation, place it back on its 
original right-handed position. In fact, 
applying a mirror operation twice in 
succession is equivalent to the identity 
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operation, so that a mirror operation is 
its own inverse. 

The two operations, mirror and iden- 
tity, obey the four rules of group theory, 
and thus constitute one of the simplest 
symmetry groups. A mathematical rep- 
resentation of these operations is 

m 1  = m and 

Further, a "multiplication table" 
between these two operations can be set 
up to show the products that any pair of 
symmetry operations gives in this finite 
group (Fig. 2). 

There are three types of symmetry 
operations in crystallography. The sim- 
plest type is the set of translation oper- 
ations needed to fill a two-dimensional 
infinite plane or a three-dimensional in- 
finite space. These operations form a 
group by themselves and have essen- 
tially the same characteristics as the 
example group of integers discussed 
above. The difference is that the trans- 
lation group has two or three sets of 
integers depending on whether a two- 
dimensional plane or a three-dimen- 
sional space is filled. These translation 
operations make the concept of a unit 
cell possible, because once the unit cell 
for a crystal is specified, it takes only 
the right combination of translation op- 
erations to construct the full crystal lat- 
tice. 

There is also a type of translation 
operation that relates objects within 
a unit cell so that the same objects 
are found at coordinates that are half 
multiples of unit-cell distances along 
two or three of the axes. These last 
operations are, for example, responsible 
for the face- and body-centered lattices 
found in three dimensions (Fig. 3). The 
possible combinations of this full set of 
translations for plane- and space-filling 
arrays (along with the restrictions on the 
rotation-symmetry operations that will 

be discussed next) gives only five possi- 
ble plane lattices and fourteen possible 
space lattices (Fig. 3). 

The second type of crystallographic 
symmetry is rotation. For it to be a 
valid symmetry operation, however, the 
rotation angle 6 must be an integer divi- 
sor of 360 degrees, that is, 6 = 360/n, 
where n is an integer. The rotation- 
symmetry operations will then all be 
multiples of this rotation angle. For ex- 
ample, if n = 6 the rotation angle is 
60 degrees and the operations can be 
represented by the unique set 'C6, 'c6, 
'c6 (= '~2) ,  ̂c6, 'c6, and '(26 (= I) in 
which the subscript gives the fraction of 

A FINITE SYMMETRY GROUP 

Fig. 2. This example of a simple, finite group 
obeying all the rules of group symmetry 
consists solely of the identity element, I ,  
and the mirror-plane symmetry operation, m. 
The multiplication table shown above for the 
group gives the products for any palrwlse 
application of the two symmetry operations. 

a full circle for each operation (here 
116) and the superscript gives the mul- 
tiple of 60 degrees used for the rotation 
(Fig. 4). Because 6 ~ 6  is the identity 
operation, these six rotation operations 
constitute a group, symbolized by C6. 

If the symmetry is local with no 
translation component, then the integer 
n can take on any value from one to 
infinity. An object that has the extreme 
case of Coo symmetry is a bowling pin, 
which an infinitesimally small rotation 
leaves looking the same (ignoring any 
painted design). However, when the 
rotation symmetry is part of a plane- or 
space-filling symmetry with translation 
operators, only five different rotation 
angles (n = 1, 2, 3, 4, or 6) can be 
used. Replication of a unit cell with 
a rotation symmetry other than these 
cannot fill a plane surface or three- 
dimensional space without leaving voids 
or having overlapping regions. The 
situation is more complicated in the 
three-dimensional case because a unit 
cell may also have different rotation 
symmetry in different directions. Many 
different groups result from the various 
combinations of these rotations. 

An extension to the concept of ro- 
tation symmetry is to include in each 
rotation operator a translation compo- 
nent (Fig. 5). The resulting objects are 
helical or screwlike; hence, these oper- 
ations are called screw rotations. These 
symmetry operations are most prevalent 
in crystal lattices in which the unit-cell 
repeat requirement means that the trans- 
lation operations have the same integer 
fraction, or some simple multiple, as the 
rotation operations. For example, the 
screw rotation 61 describes an opera- 
tion in which the rotation of 60 degrees 
is accompanied by a translation of 116 
of the unit cell along the rotation axis. 
The 64 screw rotation has the same 60- 
degree rotation but this time is accom- 
panied by a translation of 416 of the unit 
cell along the axis. A sufficient num- 
ber of these is superimposed to give the 
required unit-cell translation (Fig. 5), 
and the resulting arrangement is differ- 
ent from that obtained with a 61 screw 
rotation. 

The one facet common to the trans- 
lation, rotation, and screw operations is 
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THE BRAVAIS SPACE LATTICES 

Fig. 3. The fourteen unit cells depicted above 

represent the only possible ways that space 

can be filled without gaps or overlaps between 

cells, that is, consonant with the restrictions 

of translation and rotation symmetry. The 

cubic cells at the top all have three orthogonal 

sides of equal length; the body-centered (1) 

and face-centered cubic cells (F )  cannot be 
fully specified without also using translation 

operations in terms of half-cell distances. The 

tetragonal and orthorhombic cells also have 

sides that are mutually orthogonal, but either 

one side differs in length from the other two 

sides (tetragonal) or all three sides differ in 

length (orthorhombic). The monoclinic and 

triclinic cells have three unequal lengths but 

now either one angle (monoclinic) or all three 

angles (triclinic) between the sides do not 

equal 90 degrees. The rhombohedra1 cell can 

be thought of as a cubic cell that has been 

stretched or squeezed along a diagonal: the 

three sides are equal but the three angles, 

although equal, are not 90 degrees. The 

hexagonal cell has two angles of 90 degrees 

and one of 120 degrees; only two of its three 

sides are equal. 

that none of these change the handed- 
ness of an object, and changing hand- 
edness is the major feature of the third 
type of crystallographic symmetry. We 
have already mentioned the mirror- 
symmetry operation that relates right- 
and left-handed objects across a plane. 
A similar operation is inversion (Fig. 6) 
in which right- and left-handed ob- 
jects are arranged on opposite sides 
of a point, called an inversion center. 
The presence of an inversion center in 
a crystal is one of the primary classi- 
fication features for crystal structures: 
such crystal structures are centrosymmet- 
ric. An example of the importance of 
inversion centers is that almost all bio- 
logically important molecules (proteins, 
amino acids, et cetera) do not have a 
self-contained inversion center and exist 

Cubic P Cubic I Cubic F 

Tetragonal P Tetragonal / 

Orthorhombic P Orthorhombic C Orthorhombic I 

Monoclinic P 

Rhombohedral 

Monoclinic C 

Orthorhombic F 

Triclinic P 

Trigonal and Hexagonal P 

in nature only in one-handed forms. screw operations, mirror reflection can 
Thus, they always crystallize in noncen- be combined with a fractional transla- 
trosyrnrnetric crystal structures because tion (always one-half of the unit cell) 
the other-handed molecules do not exist. to form a new operation (Fig. 7). This 

In analogy to the operations combin- is known as a glide operation, and the 
ing rotations with translations to form mirror part of the operation occurs at 
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Axis of Rotation 

ROTATION OPERATIONS 

Fig. 4. The C6 rotation symmetry group 

consists of all the rotations about an axis 
a that carry an object through angles that 
are multiples of 60 degrees. Two of the 

1 operations in the symmetry group, C6 and 
2 C6, are labeled in the figure; is the 

identity operation that carries the object a full 
360 degrees back into itself. 

a glide plane. Just as for the screw 
operation, glide operations are only 
found in crystal lattices where the 
repetition of translation and reflection 
can extend indefinitely. Similarly, an 
inversion operation can be combined 
with a rotation (Fig. 8). Because this 
operation occurs about a point, however, 
it is found in both isolated objects and 
in extended lattices. 

When these operations are combined 
in ways that form two-dimensional pla- 
nar arrays, only 17 unique plane groups 
are found. With three dimensions, the 
combination of operations gives just 92 
centrosymmetric and 138 noncentrosym- 
metric space groups for a total of 230. 

An additional type of operation worth 
considering is one that in a two-dimen- 
sional plane would, say, change the 
color of the object (see the opening 
figure of the main article). The sim- 
plest case is a "black-white" operator, 

116th , Translation 

Axis of Rotation 

Axis of Rotation 

and such a color-reversal operator can 
also be combined with the other oper- 
ators discussed earlier. An application 
of this type of operation is to describe 
the ordering of magnetic moments found 
in some materials by neutron scatter- 
ing. Frequently, the moments arrange 
themselves in an alternating pattern so 
that every other one is "up" and all the 
others are "down." The symmetry of 
these arrangements can be described 
by including the color-reversal opera- 
tion, which expands the total number 

SCREW ROTATIONS 

Fig. 5. a) The 6i screw rotation is the 
application of a 60-degree rotation about 
a given axis of the unit cell followed by a 
translation along that axis of one-sixth of 
the unit-cell distance. This combination of 
symmetry operations is repeated successively 
along the full length of the unit cell (in the 
figure, the tetrahedrons generated by each 
successive combination of operations are 
numbered consecutively). Note that the 
placement of the tetrahedrons in this figure 
resembles the placement of the tetrahedrons 
for rotation alone (Fig. 4) except that the 
circle has been "stretched out" into an arc 
because of the vertical translation along the 
axis of rotation. After six rotation-translation 
operations, the tetrahedron has returned to its 
original orientation but is translated a full unit 
along one of the cell's axes. b) The 64 screw 
rotation is the same as the 6i screw rotation 
except the translation is now for four-sixths 
(two-thirds) of the unit distance. To fill in the 
whole pattern, the next rotation-translation 
operation (which ends up one-third of the way 
into the next unit distance) and successive 
operations are superimposed on the original 
unit distance. Note that in the figure the 
dashed line has been eliminated (because 
successive operations are superimposed), 
but the tetrahedrons generated by successive 
operations are still numbered consecutively. 
After three of these combined operations, 
the tetrahedron will have moved an integral 
number of unit distances (and thus can be 

pictured at either the bottom or top of the 
figure) but will have rotated only 180 degrees. 
In this manner, the tetrahedron ends up on 
both sides of the axis at each point along 

the way. Once again, after six combined 
operations the tetrahedron has assumed its 
original orientation. 

of space groups to 1728 in 36 Bravais 
lattices. 

Because there is an intimate relation- 
ship between the arrangement of atoms 
found in real space and the pattern of 
structure factors in reciprocal space, 
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INVERSION CENTER 

Fig. 6. An inversion, denoted 1, is 

accomplished by "reflecting" everything 
through a point or "inversion center" between 
the objects. The three dashed lines drawn 
between tips on the tetrahedrons and passing 
through the inversion center illustrate this 
operation. 

the symmetry of real space must have 
counterparts in reciprocal space. How- 
ever, some of the symmetry aspects 
of reciprocal space may at first glance 
be surprising. Unlike crystallographic 
real space, which consists of a multi- 
tude of identical unit cells each with its 
own origin, reciprocal space has just 
a single origin and an infinite array of 
reciprocal-lattice points associated with 
differing and possibly complex num- 
bers (Fh's). Thus, none of the trans- 
lational aspects of the crystallographic 
symmetry can show up in the recipro- 
cal lattice other than in the dimensions 
of the reciprocal lattice itself. How- 
ever, the rotation, mirror, and inversion 
symmetries present in the lattice are 
also present in the pattern of IFh 12's 
on the reciprocal-lattice (that is, in the 
diffraction pattern). For example, the 
intensities and locations of the two- 
dimensional diffraction patterns shown 
in Figs. 4 and 5 in the main article have 
the same rotation and mirror symme- 
tries as the two-dimensional patterns of 
scatterers that generated those patterns. 

What of the other possible symmetry 
elements? A diffraction pattern almost 
always has a center of inversion-an 
inversion center is absent only for a 6 0  Rotation 

noncentrosymmetric crystal contain- 
ing an atom with a complex scattering 
factor. Half-cell translations and screw 
and glide-plane operations are revealed 
by systematic extinctions, that is, cer- 
tain classes of reciprocal-lattice points 
with zero intensity. For example, in the 
diffraction pattern for a face-centered 
cubic lattice, the only points that have 
a nonzero intensity are those for which 
the hkl indices are all even (for exam- 
ple, 422) or all odd (for example, 31 1). 
Likewise, a glide operation whose glide 
plane is perpendicular to the c crystallo 
graphic axis and whose glide direction Axis of Rotation 
is parallel to the a axis causes the points 
with hko indices and odd h to have zero AN INVERSION-ROTATION OPERATION 
intensity (for example, 120, whereas 210 
has nonzero intensity). Systematic extinc- Fig. 8. The 6 symmetry operation is a 

combination of a 6Wegree rotation followed 
by an inversion. Note that the three 

&<,- 
tetrahedrons above the plane are the same 
as the tetrahedrons in Fig. 4 for rotations 
of 0,120, and 240 degrees (that is, I ,  "6, 

/ Translation and c ~ ) .  This happens because performing 

<,Lib 
two successive 6 operations is equivalent 
to performing the operation (or two 

operations). Lines showing the first 
- combination of a 60-degree rotation and 

inversion operation are given on the figure 

/ Plane 
as well as consecutive numbers for the 
successively generated tetrahedrons. 

THE GLIDE OPERATION 

Fig. 7. Here, mirror reflection and translation 

for one-half the unit distance are combined 
to form a glide operation. Note that the 

tetrahedron on the right side of the glide 
plane is the mirror image of the tetrahedrons 
on the left side; however, each tetrahedron is 
displaced a half unit from the last one. 

tions arise because the symmetry opera- 
tion causes all the atoms to scatter with 
destructive interference for particular 
reciprocal-lattice points. 

Thus, by examining both the symme- 
try of a diffraction pattern and the sys- 
tematic extinctions, a crystallographer 
can usually identify one or two possible 
space groups for any crystal. However, 
some ambiguity may remain because 
of cases in which pairs of space groups 
display the same diffraction symmetry 
and systematic extinctions. 

Los Alanws Science Summer 1990 



X-Ray and Neutron Crystallography 

Robert B. Yon Dreele has been a staff member 
at Los Alamos since 1986. (He had, however, 
established a connection with the Laboratory 
earlier by doing neutron powder diffractometry 
at the Omega West Reactor and by consulting 
at what is now LANSCE during the summers 
of 1980-85.) His current responsibilities in- 
clude the High Intensity Powder Diffiactometer 
at LANSCE. He received his B.S. in Chemical 
Engineering and Ph.D. in Chemistry from Cor- 
nell University in 1966 and 1971, respectively. 
Immediately after completing his Ph.D. he joined 
the faculty of the Department of Chemistry at 
Arizona State University, where he remained un- 
til he joined the Laboratory. In 1971 he was a 
National Science Foundation Postdoctoral Fel- 
low at Oxford University, where he worked on 
one of the first applications of the Rietveld re- 
finement technique to neutron powder-diffraction 
data. A subsequent sabbatical year was spent as 
the first visitor to the "Neutron Beam Research 
Unit" (now ISIS) at the Rutherford-Appleton 
Laboratory in England. There he developed the 
first computer code capable of Rietveld refine- 
ment with time-of-flight powder-diffraction data 
from a spallation source. He later visited ISIS 
for seven months as a Fulbright Scholar. 

Further Reading 

Crystal Structures from X-Ray and Neutron 
Diffraction 

G. H. Stout and L. H. Jensen. 1968. X-Ray 
Structure Determination: A Practical Guide. 
New York: Macmillan Co. 

G. E. Bacon. 1975. Neutron Diffraction. Ox- 
ford: Clarendon Press. 

G. Harburn, C. A. Taylor, and T. R. Welbeny. 
1975. Atlas of Optical Transforms. Ithaca, New 
York: Cornell University Press 

D. L. Bish and J. E. Post, editors. 1989. Mod- 
ern Powder Diffraction. Reviews in Mineralogy, 
volume 20. Washington, D.C.: Mineralogical 
Society of America. 

H. M. Rietveld. 1969. A profile refinement 
method for nuclear and magnetic structures. 
Journal of Applied Crystallography 2: 65. 

R. A. Young, P. E. Mackie, and R. B. Von 
Dreele. 1977. Application of the pattern-fitting 
structure-refinement method to x-ray powder 
difiractometer patterns. Journal of Applied 
Crystallography 10: 262. 

R. B. Von Dreele, J. D. Jorgensen, and C. G. 
Windsor. 1982. Rietveld refinement with 
spallation neutron powder diffraction data. 
Journal of Applied Crystallography 15: 581. 

Crystallography And Crystal Symmetry 

M. J. Buerger. 1963. Elementary Crystallogra- 
phy. New York: John Wdey & Sons. 

J. E. Brigham, translator. 1972. The Graphic 
Works of M .  C.  Escher. London: Pan/Ballantine. 

N. F. M. Henry and K. Lonsdale, editors. 1969. 
Symmetry Groups. International Tables for X- 
Ray Crystallography, volume 1. Birmingham: 
Kynoch Press. 

M. Senechal and G. Fleck, editors. 1974. 
Patterns of Symmetry. Amherst, Massachusetts: 
University of Massachusetts Press. 

G. Bums and A. M. Glazer. 1978. Space 
Groups for Solid State Scientists. New York: 
Academic Press. 

B. K. Vainshtein. 1981. Modern Crystallogra- 
phy. I .  Symmetry of Crystals, Methods of Struc- 
tural Crystallography. New York: Springer- 
Verlag. 

M. A. Jaswon and M. A. Rose. 1983. Crystal 
Symmetry: Theory of Color Symmetry. New 
York: Halsted Press. 

T. Hahn, editor. 1985. Space-Group Symmetry. 
International Tables for Crystallography, volume 
A. Boston: Reidel. 

Los Alarnos Science Summer 1990 


